Lecture 07
 13.1: Curves in space and their derivatives

Jeremiah Southwick

February 1, 2019

Things to note

Exam 1 is on Monday, February 11 (10 days away).
Quiz 04 will be on Wednesday, February 6.

Friday, February 8 will be a review day with no quiz.

Last few classes

Distance from S to a line with point P and direction vector $\overrightarrow{\mathbf{v}}$:

$$
\frac{\|\overrightarrow{P S} \times \overrightarrow{\mathbf{v}}\|}{\|\overrightarrow{\mathbf{v}}\|}
$$

Distance from S to a plane with point P and normal vector $\overrightarrow{\mathbf{n}}$:

$$
\frac{|\overrightarrow{P S} \cdot \overrightarrow{\mathbf{n}}|}{\|\overrightarrow{\mathbf{n}}\|}
$$

Only first formula will be on today's quiz.

Curves in space

Curves in space

Can think of such a curve as the path of a particle moving in three dimensions.

Vector-Valued Functions

We represent space curves as vector-valued functions.

Vector-Valued Functions

We represent space curves as vector-valued functions.

Definition

A vector-valued function is a function

$$
\overrightarrow{\mathbf{r}}(t)=\langle f(t), g(t), h(t)\rangle
$$

where f, g, and h are real-valued functions.

Vector-Valued Functions

We represent space curves as vector-valued functions.

Definition

A vector-valued function is a function

$$
\overrightarrow{\mathbf{r}}(t)=\langle f(t), g(t), h(t)\rangle
$$

where f, g, and h are real-valued functions.
We have already seen an example of a space curve: lines.
Example
The function $\overrightarrow{\mathbf{r}}(t)=\langle 1+t,-2 t, 3+5 t\rangle$ is a space curve (in this case, also a line).

Example

There are also more complex examples, such as the helix below.
Example
$\overrightarrow{\mathbf{r}}(t)=\langle\cos (t), \sin (t), t\rangle$, graphed from $t=0$ to $t=2 \pi$.

Limits of vector functions

Limits of vector-valued functions are calculated in each component.

Limits of vector functions

Limits of vector-valued functions are calculated in each component.
Definition
Let $\overrightarrow{\mathbf{r}}(t)=\langle f(t), g(t), h(t)\rangle$. Then

$$
\lim _{t \rightarrow t_{0}} \overrightarrow{\mathbf{r}}(t)=\left\langle\lim _{t \rightarrow t_{0}} f(t), \lim _{t \rightarrow t_{0}} g(t), \lim _{t \rightarrow t_{0}} h(t)\right\rangle
$$

and the limit exists if all three limits exist.

Limits of vector functions

Limits of vector-valued functions are calculated in each component.
Definition
Let $\overrightarrow{\mathbf{r}}(t)=\langle f(t), g(t), h(t)\rangle$. Then

$$
\lim _{t \rightarrow t_{0}} \overrightarrow{\mathbf{r}}(t)=\left\langle\lim _{t \rightarrow t_{0}} f(t), \lim _{t \rightarrow t_{0}} g(t), \lim _{t \rightarrow t_{0}} h(t)\right\rangle
$$

and the limit exists if all three limits exist.
Example
Let $\overrightarrow{\mathbf{r}}(t)=\left\langle\frac{\sin (t)}{t}, e^{-t}+5, \frac{t^{2}}{2 t^{2}-4}\right\rangle$. What is $\lim _{t \rightarrow 0} \overrightarrow{\mathbf{r}}(t)$?

Limits of vector functions

Limits of vector-valued functions are calculated in each component.
Definition
Let $\overrightarrow{\mathbf{r}}(t)=\langle f(t), g(t), h(t)\rangle$. Then

$$
\lim _{t \rightarrow t_{0}} \overrightarrow{\mathbf{r}}(t)=\left\langle\lim _{t \rightarrow t_{0}} f(t), \lim _{t \rightarrow t_{0}} g(t), \lim _{t \rightarrow t_{0}} h(t)\right\rangle
$$

and the limit exists if all three limits exist.
Example
Let $\overrightarrow{\mathbf{r}}(t)=\left\langle\frac{\sin (t)}{t}, e^{-t}+5, \frac{t^{2}}{2 t^{2}-4}\right\rangle$. What is $\lim _{t \rightarrow 0} \overrightarrow{\mathbf{r}}(t)$?
Using our knowledge of limits from Calculus 1, we get
$\lim _{t \rightarrow 0} \overrightarrow{\mathbf{r}}(t)=\langle 1,6,0\rangle$.

Continuity

Continuity is also defined in each component.
Definition
Let $\overrightarrow{\mathbf{r}}(t)=\langle f(t), g(t), h(t)\rangle$. Then $\overrightarrow{\mathbf{r}}(t)$ is continuous at $t=t_{0}$ if

$$
\lim _{t \rightarrow t_{0}} \overrightarrow{\mathbf{r}}(t)=\overrightarrow{\mathbf{r}}\left(t_{0}\right)
$$

that is, it is both the case that the limit exists and is equal to $\overrightarrow{\mathbf{r}}\left(t_{0}\right)$.

Continuity

Continuity is also defined in each component.
Definition
Let $\overrightarrow{\mathbf{r}}(t)=\langle f(t), g(t), h(t)\rangle$. Then $\overrightarrow{\mathbf{r}}(t)$ is continuous at $t=t_{0}$ if

$$
\lim _{t \rightarrow t_{0}} \overrightarrow{\mathbf{r}}(t)=\overrightarrow{\mathbf{r}}\left(t_{0}\right)
$$

that is, it is both the case that the limit exists and is equal to $\overrightarrow{\mathbf{r}}\left(t_{0}\right)$.
Example
Consider the helix, $\overrightarrow{\mathbf{r}}(t)=\langle\cos (t), \sin (t), t\rangle$.

Continuity

Continuity is also defined in each component.
Definition
Let $\overrightarrow{\mathbf{r}}(t)=\langle f(t), g(t), h(t)\rangle$. Then $\overrightarrow{\mathbf{r}}(t)$ is continuous at $t=t_{0}$ if

$$
\lim _{t \rightarrow t_{0}} \overrightarrow{\mathbf{r}}(t)=\overrightarrow{\mathbf{r}}\left(t_{0}\right)
$$

that is, it is both the case that the limit exists and is equal to $\overrightarrow{\mathbf{r}}\left(t_{0}\right)$.

Example

Consider the helix, $\overrightarrow{\mathbf{r}}(t)=\langle\cos (t), \sin (t), t\rangle$. Each function $\cos (t), \sin (t)$, and t is continuous on \mathbb{R}. Thus $\overrightarrow{\mathbf{r}}(t)$ is continuous.

Continuity

Continuity is also defined in each component.
Definition
Let $\overrightarrow{\mathbf{r}}(t)=\langle f(t), g(t), h(t)\rangle$. Then $\overrightarrow{\mathbf{r}}(t)$ is continuous at $t=t_{0}$ if

$$
\lim _{t \rightarrow t_{0}} \overrightarrow{\mathbf{r}}(t)=\overrightarrow{\mathbf{r}}\left(t_{0}\right)
$$

that is, it is both the case that the limit exists and is equal to $\overrightarrow{\mathbf{r}}\left(t_{0}\right)$.

Example

Consider the helix, $\overrightarrow{\mathbf{r}}(t)=\langle\cos (t), \sin (t), t\rangle$. Each function $\cos (t), \sin (t)$, and t is continuous on \mathbb{R}. Thus $\overrightarrow{\mathbf{r}}(t)$ is continuous.
The example $\overrightarrow{\mathbf{r}}(t)=\left\langle\frac{\sin (t)}{t}, e^{-t}+5, \frac{t^{2}}{2 t^{2}-4}\right\rangle$ would not be continuous at $t=0$, however, since $\overrightarrow{\mathbf{r}}(0)$ is not defined.

Derivatives

We can also take derivatives of vector-valued functions. Once again, this simply happens in each component.
Definition
Let $\overrightarrow{\mathbf{r}}(t)=\langle f(t), g(t), h(t)\rangle . \overrightarrow{\mathbf{r}}$ is differentiable at $t=t_{0}$ if f, g and h are differentiable at t_{0}. In this case,

$$
\vec{r}^{\prime}(t)=\frac{d \overrightarrow{\mathbf{r}}}{d t}=\left\langle\frac{d f}{d t}, \frac{d g}{d t}, \frac{d h}{d t}\right\rangle .
$$

Derivative vectors

We can visualize $\frac{d \vec{r}}{d t}$ geometrically as the tangent vector to the space curve.

Differentiation Rules (pg. 756)

Let $\overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{v}}$ be vector-valued functions. Let $\overrightarrow{\mathbf{C}}$ be a constant vector. Let $k \in \mathbb{R}$ be a scalar, and let $f(t)$ be a differentiable real-valued function. Then the following rules hold.

$$
\begin{aligned}
& \text { 1. } \frac{d}{d t}[\overrightarrow{\mathbf{C}}]=\overrightarrow{\mathbf{0}} \\
& \text { 2. } \frac{d}{d t}[k \overrightarrow{\mathbf{u}}(t)]=c \frac{d \overrightarrow{\mathbf{u}}}{d t} \\
& \frac{d}{d t}[f(t) \overrightarrow{\mathbf{u}}(t)]=\frac{d f}{d t} \overrightarrow{\mathbf{u}}(t)+f(t) \frac{d \overrightarrow{\mathbf{u}}}{d t} \\
& \text { 3,4. } \frac{d}{d t}[\overrightarrow{\mathbf{u}}(t) \pm \overrightarrow{\mathbf{v}}(t)]=\frac{d \overrightarrow{\mathbf{u}}}{d t} \pm \frac{d \overrightarrow{\mathbf{v}}}{d t}
\end{aligned}
$$

Differentiation Rules (pg. 756)

Let $\overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{v}}$ be vector-valued functions. Let $\overrightarrow{\mathbf{C}}$ be a constant vector. Let $k \in \mathbb{R}$ be a scalar, and let $f(t)$ be a differentiable real-valued function. Then the following rules hold.

$$
\begin{aligned}
& \text { 1. } \frac{d}{d t}[\overrightarrow{\mathbf{C}}]=\overrightarrow{\mathbf{0}} \\
& \text { 2. } \frac{d}{d t}[k \overrightarrow{\mathbf{u}}(t)]=c \frac{d \overrightarrow{\mathbf{u}}}{d t} \\
& \frac{d}{d t}[f(t) \overrightarrow{\mathbf{u}}(t)]=\frac{d f}{d t} \overrightarrow{\mathbf{u}}(t)+f(t) \frac{d \overrightarrow{\mathbf{u}}}{d t} \\
& \text { 3,4. } \frac{d}{d t}[\overrightarrow{\mathbf{u}}(t) \pm \overrightarrow{\mathbf{v}}(t)]=\frac{d \overrightarrow{\mathbf{u}}}{d t} \pm \frac{d \overrightarrow{\mathbf{v}}}{d t} \\
& \text { 5. } \frac{d}{d t}[\overrightarrow{\mathbf{u}}(t) \cdot \overrightarrow{\mathbf{v}}(t)]=\frac{d \overrightarrow{\mathbf{u}}}{d t} \cdot \overrightarrow{\mathbf{v}}(t)+\overrightarrow{\mathbf{u}}(t) \cdot \frac{d \overrightarrow{\mathbf{v}}}{d t} \\
& \text { 6. } \frac{d}{d t}[\overrightarrow{\mathbf{u}}(t) \times \overrightarrow{\mathbf{v}}(t)]=\frac{d \overrightarrow{\mathbf{u}}}{d t} \times \overrightarrow{\mathbf{v}}(t)+\overrightarrow{\mathbf{u}}(t) \times \frac{d \overrightarrow{\mathbf{v}}}{d t} \\
& \text { 7. } \frac{d}{d t}[\overrightarrow{\mathbf{u}}(f(t))]=f^{\prime}(t) \overrightarrow{\mathbf{u}}^{\prime}(f(t))
\end{aligned}
$$

Notation

If we think of $\overrightarrow{\mathbf{r}}(t)$ as the path of a particle in space, we use the notation

$$
\overrightarrow{\mathbf{v}}(t)=\frac{d \overrightarrow{\mathbf{r}}}{d t} \text { and } \overrightarrow{\mathbf{a}}(t)=\frac{d \overrightarrow{\mathbf{v}}}{d t}=\frac{d^{2} \overrightarrow{\mathbf{r}}}{d t^{2}} .
$$

Notation

If we think of $\overrightarrow{\mathbf{r}}(t)$ as the path of a particle in space, we use the notation

$$
\overrightarrow{\mathbf{v}}(t)=\frac{d \overrightarrow{\mathbf{r}}}{d t} \text { and } \overrightarrow{\mathbf{a}}(t)=\frac{d \overrightarrow{\mathbf{v}}}{d t}=\frac{d^{2} \overrightarrow{\mathbf{r}}}{d t^{2}} .
$$

The quantity $\|\overrightarrow{\mathbf{v}}(t)\|$ represents the speed of the particle at time t. Notice that this is a real-valued function.

Example

Example

Find $\overrightarrow{\mathbf{v}}(t),\|\overrightarrow{\mathbf{v}}(t)\|$, and $\overrightarrow{\mathbf{a}}(t)$ for the helix $\overrightarrow{\mathbf{r}}(t)=\langle\cos (t), \sin (t), t\rangle$.

Example

Example

Find $\overrightarrow{\mathbf{v}}(t),\|\overrightarrow{\mathbf{v}}(t)\|$, and $\overrightarrow{\mathbf{a}}(t)$ for the helix $\overrightarrow{\mathbf{r}}(t)=\langle\cos (t), \sin (t), t\rangle$.
We have $\overrightarrow{\mathbf{v}}(t)=\langle-\sin (t), \cos (t), 1\rangle$ and
$\overrightarrow{\mathbf{a}}(t)=\langle-\cos (t),-\sin (t), 0\rangle$. We calculate

$$
\|\overrightarrow{\mathbf{v}}\|=\sqrt{(-\sin (t))^{2}+(\cos (t))^{2}+(1)^{2}}=\sqrt{1+1}=\sqrt{2}
$$

